コピペだけで実用的かつ実践的なディープラーニングによる回帰分析を利用させてもらっている者です。①ディープラーニングを行う際は、多重共線性の疑いがある変数をはずすなど、変数選択を行った後に解析を実行するのでしょうか?②隠れノードに対する隠れ層の計算式を見たいのですが、どうすればよいでしょうか?③ 隠れ層と隠れノードの数に適正値はありますでしょうか?④ディープラーニングを行う上での注意点がありましたらご教授ください。

ご質問いただきありがとうございます。
①②③についてそれぞれ回答させていただきます。
① もちろん多重共線性のある変数の一方を削除してから解析することも問題ございませんが、経験的には、削除してもしなくてもモデルの精度はあまり変わりませんので、変数選択しなくても良いかと思います。
② まず、h2o.shutdown(prompt = FALSE) を削除もしくはテキスト化してください。
次に、実際にディープラーニングしている部分である
NetworkResult = ... からの11行の中に、export_weights_and_biases = TRUE を追記してください。
そうすれば、実行したあとに、h2o.weights(NetworkResult, matrix_id=1) や h2o.weights(NetworkResult, matrix_id=2) などで、1層目まで、2層目までなどの重みを確認可能です。
③ 残念ながら、隠れ層と隠れノードの数に適正値はございません。データセットによって異なります。試行錯誤的に適正値を見つけるのが一般的です。
以上です。よろしくお願い致します。

View more

  • 30
    Posts
  • 46
    Likes

About 大学教授:

データ解析周辺、日頃のできごとからデータ解析につながる種のようなもの、広く研究・教育などについて書いています。

#データ分析 #データ解析 #ビッグデータ #機械学習 #データマイニング #教育 #大学 #子育て